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ANALYSIS OF A ROBUST FINITE ELEMENT 
APPROXIMATION FOR A PARABOLIC EQUATION 

WITH ROUGH BOUNDARY DATA 

DONALD A. FRENCH AND J. THOMAS KING 

ABSTRACT. The approximation of parabolic equations with nonhomogeneous 
Dirichlet boundary data by a numerical method that consists of finite elements 
for the space discretization and the backward Euler time discretization is stud- 
ied. The boundary values are assumed in a least squares sense. It is shown 
that this method achieves an optimal rate of convergence for rough (only L2) 
boundary data and for smooth data as well. The results of numerical computa- 
tions which confirm the robust theoretical error estimates are also presented. 

1. INTRODUCTION 

Consider the initial boundary value problem 

yt +Ay = O in Q x [O, T], 
(1) y=g onFx[O,T], 

y(.,O)=v onQ, 
where Q is an open bounded convex polygonal domain in R2 with boundary 
F. We assume the elliptic operator 

A = - E xi (ai, j(x) )xj 

has smooth coefficients, say C2 (Q), and the 2 x 2 symmetric matrix with entries 
ai, j is uniformly positive definite on Q. 

In this paper we are primarily concerned with rough boundary data g which 
belong to either the space L?? (O, T; L2 (]F)) or L2(O, T; L2(r)). This is typi- 
cal of certain problems in control theory where the control g has the bang-bang 
property (see [17]). As such our scheme for approximating the solution of (1) 
is a building block for solving these control problems. 

For Neumann boundary control problems of parabolic type the finite element 
approximation has been analyzed by Winther [22]. For related time-optimal 
control problems see Knowles [16]. 
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Ground-breaking work on parabolic control problems with boundary Dirich- 
let control was done by Lasiecka [17, 18, 19]. Approximation by finite element 
methods of problem (1) was also considered by Lasiecka [17, 18] and Choudury 
[6]. One such method that is analyzed in [18, 6] uses piecewise linear elements 
in space which vanish on ?. Optimal-order convergence is proved for the 
continuous time method in [17] and for a fully discrete scheme in [6]. This 
nonstandard approach, while optimal for rough g, is suboptimal for smooth 
g- 

The scheme we propose and analyze is optimal for both rough and smooth 
boundary data. Our approximation u consists of piecewise constants in time 
and finite elements in space, and assumes the boundary values in a least squares 
sense. Specifically, let Vk denote the space of piecewise constant functions on 
a partition 0 = to < tl < * < tN= T, where tn = nk and k > O is the 
time step. Then Y/ e Vk if v = EN 1 yj',X, where xi, is the characteristic 
function of Ij = (tj1, tj]. We denote by Vh a finite element space on Q with 
parameter h. In our estimates with rough boundary data we require 

(2) k = ch2; 

however, this restriction is not necessary in our analysis for smooth boundary 
data. 

To define our scheme, we need to introduce some L2 projections. Let 

V0 - {% e Vh: = 0 on F} 

and Vh(F) denote the restriction of Vh to F. Define the L2 projections 
Qh : L2(F) -* Vh(F) and Pk: L2(0, T) - Vk, and set Q = QhPk = PkQh. 
We denote on In 

PkW=P2Pw= j w(t)dt. 

Our numerical method is as follows: Find u e Vh 0 Vk such that 
N 

(3) [(un - un-1 ) + ka(un, q)] = V, Vo e Vh (D Vk, 
n=1 

with u = Qg on X = 7 x (0, T], uo = OPv, where un is the restriction of u 
to Q x In , 90: L2(Q) __ Vh is the L2 projection, 

a(w,Z)=J (zE ai x ) dx, 

and (w, z) = fQwzdx. In Theorem 1 we will consider v eH-1/2(Q) 
bounded linear functionals on H1/2(Q) , and define Y2: H-1/2(Q) ' Vh by 

V()=(Y?V, ), Xe Vh. 

Subsequently we denote the duality pairing for v e H-1/2(Q) and b eH'/2(Q) 
by (v, 0). 

It is straightforward to demonstrate that (3) is uniquely solvable since for 
each n= 1, 2, N 

(un - unl-, 0) + ka(un, 0) = O 
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for all 0 e VO, and on F 

un = jQhg(,t)dt. 

This method is equivalent to backward Euler and is the simplest discontinu- 
ous Galerkin method (see, for example, [14]). For more general discontinuous 
Galerkin methods, see [8, 9, 15]. Observe that defining the approximate bound- 
ary data through interpolation would be inappropriate, since the data, g, is not 
continuous. 

We will prove the following error estimates. 

Theorem 1. There exists a constant C independent of h, u, and y such that if 
(2) holds then 

(4) IIY-U IIL2(0, T; L2(Q)) < Ch 1/2(11 |gIL2(,) + |IVIIH-1/2(Q)) 

for v e H-1/2(Q) and g e L2(Y). 

Theorem 2. For any e > 0 there exists a constant C independent of h, u, and 
y such that if (2) holds then 

(5) max II(Y - U)(., tn)IIL2(Q) ? Ch /2 (I1gIIL(O, T;L2(r)) + IV IIHI12(n)) 
0<n<N 

where v e H1/2(Q) and g e L??(O, T; L2(JT)). 

We denote by C a positive generic constant that is independent of h, k, 
and the data pair (v, g) . 

A key ingredient in the proofs of these error estimates is the orthogonal 
decomposition of Vh: Vh = Vh (Vh0)I, where 

(Vh)' ={e Vh: (0, x) = 0, X E Vh} 

or 
(Vh)' ={0 e Vh: a(q, x) = O, X E Vh}. 

Following Bramble, Pasciak, and Schatz [3], we refer to the latter choice of 
(VhO)? as discrete A-harmonic functions. 

The outline of the remainder of the paper is as follows. In ?2 we discuss 
problem (1) in our setting with Q a convex polygonal domain. We present a 
weak formulation for this problem that is suitable for our analysis and obtain 
a priori estimates in L2(0, T; L2(Q)) and L??(O, T; L2(Q)). In ?3 we state 
the approximation-theoretic and inverse properties of Vh needed in the proofs 
of the error estimates. We also derive certain useful estimates for functions in 
(VhJ)' . In ?4 we establish a stability estimate for the method and prove the L2 
error estimate. Section 5 is devoted to the L?? error analysis. In ?6 we sketch 
the proofs for optimal L2 and L?? error estimates when y is smooth. Finally, 
in the last section we present some numerical experiments. 

2. REGULARITY 

Lasiecka proved in [ 17] that there exists a unique solution to (1) on a domain 
Q with smooth boundary r which satisfies an a priori LOO in time estimate 
(see (21)). Lions and Magenes [20] proved similar results which were L2 in 
time but still require a smooth boundary. We shall need both LOO and L2 in 
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time estimates in the case where Q is a convex polygon. Although we suspect 
such results are known to specialists in partial differential equations we could 
not find them in the literature. Therefore, we sketch the proofs of these and 
related results for use in later sections. 

We denote by Hm (Q) the usual Sobolev space of integer order m > 0 with 
norm I . Il 1. Note that H?(Q) - L2(Q) . Similarly, Hr(F) denotes the Sobolev 
space of integer order r > 0 on ? with norm I Ir, and on H0(F) = L2(r) the 
inner product is given by 

(w, z)= j wzdu. 

As usual, the Sobolev space of order one with functions that have trace equal 
to zero on ? is denoted HO'(Q). Also, H-1(J) is the dual of H1(J), and 
H-'(Q) is the dual of H1(Q). For real s the spaces Hs(Q) and Hs(1) are 
defined by interpolation. 

We will have occasion to use the following norm interpolation inequality (see 
Proposition 2.3 in Chapter 1, ?2 of [20] or [5, Theorem 3.2.3, p. 180]) 

(6) iiWiiOr+(?-O)s < ClIWIlrllWIlsW X 

where 0 < 0 < 1 and 0 < r, s < 2. Also, from Grisvard [13, Theorem 1.5.10] 
we have for e > 0 and z e H1 (Q) the inequality 

(7) 2zig C IIzI12 + CIIZI12 

From this it follows, for v e H2(Q), that 

Ov2 
|D_V| < CIV 112 + glIV 112 
OVA 0 ?--II2 +6II1 

where 
Dv 2 Dv 

=VA E i,aj ((x) Vi 

and v = (vl, v2) is the unit outward normal to ?. Applying (6) to the second 

term on the right side and then the arithmetic-geometric mean inequality, we 

obtain 

av2 
(8) OVA < IIV112 + e3 IIV 11 

On S = Qx[0, T] let Hs r(d) = L2(0, T; Hs(Q))nHr(O, T; L2(Q)) with 
norm 

T ~~~~~~~~~~~)1/2 
IIWHls,r = (\I IW( S t)l dt + ] IIW(X )lr,[O, T] dX 

where 11 * lIr,[O,T] denotes the norm on Hr([O, T]). Similarly, Hs,r(X) - 

L2(0, T; Hs(F)) n Hr(O, T; L2(F)), and the norm on Hs, r(X) will be denoted 

by 1H1s,r. 
The elliptic operator A defined by a(u, v) = (Au, v) for v E HO (Q) satis- 

fies (see Grisvard [13, Chapter 3]) 

(9) JJuI12 < CIlAullo, 
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where 92f(A) = H2(Q) nHo' (Q). There is a continuous extension of A to L2 (Q) 
which we also denote by A and which is defined by (Au, v) = (u, Av) for 
v e Ho' (Q). This operator has an orthonormal in L2(Q) basis of eigenfunctions 
{q$m}?M?=- c ?(A) and real eigenvalues 0 < A < A2 < A3 < ... such that 

a(qm, v) = Am(qm, v) VV e Hod(Q) 

with 
a(qm, 01) = Am(qm, 01) = Am5m, 

where i5m denotes the Kronecker data (see Babuska and Osborn [1]). 
Following Bramble and Thomee [4], we denote by HS(Q) the subspace of 

L2 (Q) consisting of functions v such that 

00 1/2 

IIV|HS() = E As v2) < ??) 
m=1 

where vm = (v, q$m). It follows, for 0 < s < 2, that 

IIVHIftS(Q) = IlAs/2vIIo, 

where AY is defined by Ayu = E)1 Aynumkm. We note that H2(Q) = 9(A), 
- H1(Q) = H( (A1/2), 110(Q) = L2(Q), and Hs(Q) = Hs(Q) for 

0 < s < 1. Also by the K-method of interpolation introduced by Lions 
and Peetre (see Butzer and Berens [5, p. 166]) one gets Hs(Q) = -(As/2)- 

[Ho' (Q),L2(Q)]s for 0 < s < 1. 
For g = 0 the solution of (1) is given by 

00 

(10) E(t)v = E e-A-tvmom. 
m=1 

For smooth F one has the well-known smoothing property for t > 0 and 
0<1 < s: 

(I11) jjE(t)vjjf,,(,) < Ct-(s 1)12 IIV 11,1(i) V E e H (n) . 

For a convex polygon Q the solution E(.)v is only guaranteed to lie in 9(A) = 

H2(Q). It follows that ( 11) is valid for 0 < 1 < s < 2, by the same proof as in 
[4]. 

To establish the solvability of (1), we need the Dirichlet map D: L2 (r) 
H1/2(Q) defined by 

(12) (Dg, AO) -(g Vq e -'(A). 

It is well known that D is a bounded mapping. 
We denote the solution to (1) with inhomogeneous right side f, v = 0, and 

g = 0 by 
t 

Bf = E(t - s)f(., s) ds. 

Using the bounded mapping T: L2(Q) -- 9'(A), defined by 

a(Th, 0) = (h, 0) Vq e Ho (Q) X 
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we can show by energy arguments that 

IIBf 11 1, 0 < CII Tf 11 l, o and IIBf IIo,o < Cil Tf llo, o, 

as well as for the E operator 

IIE(.)vIl ,o < Cllvllo and IIE(.)vllo,o < ClIv I-1. 

Taking f = An in the previous inequalities for B, we obtain 

IIBAIlll,o ? CIIjjII,O and IIBAnIIo,o < CljIqJo,o. 

By interpolation (see Theorem 5.1 in Chapter 1 of [20]) it follows that BA: 
Hs 0(6l) - Hs?O(S) and E(.): HS-l(Q) -- Hs?O(S) are bounded maps for 
O < s < 1. 

We now turn to defining y as a solution of the following very weak formu- 
lation of (1): Find y defined on S such that 

(13) (Y, Wt -TAw) dt = | ( dt-(v, w(., O)) 

for all w e H2',1 (S) n Ho' (Q) with w(, T) = 0, where v and g are given. 
We will specify appropriate spaces for v, g, and the solution y in what fol- 
lows. We note that uniqueness holds since the only solution for zero data is 
y = 0 (choose wt - Aw = y) . Moreover, formulation (13) is essentially the 
transposition procedure of Lions and Magenes [20, Chapter 4, ?8] and will be 
the starting point for the error analysis of our method. We will obtain L?? and 
L2 (in time) a priori estimates in terms of the data. 

Let { n lo be a sequence of infinitely differentiable functions which have 
compact support in Q for all t, and let {v n I} 

o c Coo (Q). Take zn to be the 
solution of 

zn + Azn =-n on S 

with zn = 0 on F and zn(., 0) = vn -nl(., 0). Through integration by parts 
in both t and x it is easy to show for w e H2',1 (a) n Ho' (Q), w(-, T) = 0, 

T rT 

X(Zn, wt -Aw) dt = (Kln, wt) dt + (vn, w(, O)) . 

Setting yn = zn + qn, we find 
T T 

(14) A(yn, wt t-Aw) dt =X(tln, Aw) dt + (vn, w(, O)) . 

Moreover, zn is given by 

(15) zn = E(.)(vn - fn(., 0)) -Bn 

and using integration by parts on the second term, we obtain 

(16) yn = E(.)vn + ABqn. 

Note that A and B commute on L2 . From the boundedness of the mappings 
E(.) and BA it follows that 

(17) IYln 11 1/2, 0 C(IlIvn 11 -1l/2 + 11n1 1/2,o) 
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Assuming Vn _ v in H-1/2(Q) and jn '-- Dg in H1/2 0(d), we have yn -y 

and from (14) it follows that y satisfies 
rT rT 

(18) j y, wt -Aw) dt =J(Dg, Aw) dt + (v, w(., O)) 

for all w e H2 1 (e) n Ho' (Q) with w(., T) = 0. Also, from (16) we have 
(19) y=E(.)v+ABDg. 
By the definition of Dg, y satisfies (13) and 

(20) IIYII1I02,0 C(11vlJ11i2 + 1g1,O)- 
With the same argument as in [17] it follows that for v e HI/2(j2), g e 
L??(O, T; L2(J)) (hence, Dg e L??(O, T; H1/2(Q))), and e > 0, 

(21) IIYI1Lcc(O, T;Hl/2-e(Q)) ? C(Iv 11 1/2 + IgIiL- (o, T;L2(r))) 
Formula (19) and estimate (21) were obtained in [17] for the case where r is 
smooth. 

Inequalities (21) and (20) give estimates on the regularity of the solution in 
terms of the data. We establish a priori bounds in Propositions 1 and 2 for the 
approximate solution, u, using the same data norms as in (21) and (20). 

Finally we state results for the following backward in time parabolic problem 
that will be used in our analysis. If f e L2(d), then 

wt-Aw=f inQx[O,T], 
w=0 onFx[o,T], 

w(., T) = 0 on Q 

has a unique solution w e H2 l (e) n Ho' (Q). It is not difficult to prove that 

(22) 11w112,1 < CIIfIbo,o 
and 

(23) IIw(, O)1I < Clif o o. 

3. APPROXIMATION PROPERTIES 

In this section we give a precise definition of our finite element space. We 
also list the required approximation properties of various projection operators 
we use and present several key technical results. 

Let 0 < h < 1 and Vh be the space of continuous piecewise linear func- 
tions relative to a quasiuniform triangulation Th of Q. That is, for some a 
(independent of h) each triangle z E Th contains a disc of radius ah and is 
contained in a disc of radius h. 

Define Ph?: L2(Q) JhO to be the L2 projection, and let P,> H1(2) J/VO 

denote the elliptic projection: 

a(Phlv, 0) = a(v, 0) V E Vho. 
We now list, for later reference, some well-known (see Ciarlet [7, ?3.1]) prop- 

erties of Vh and VhJ. For z E HS(Q), 1 < s < 2, 

(24) inf (110 - zllo + hIlb - zll I) < ChsllzHls, 
(E Vh 

(25) ~~Vj - Qh)Z10 ? Ch'l2zs 
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We also use the inverse properties for x E Vh: 

(26) IIXIIs < Ch-(s-1)HX IIi, 0 < /< s < 1, 
1_ rI < r< I (27) IXI1/2 < Ch-l/2+r y, 0 r ?2. 

Remark. Inequality (25) follows from (24) by the use of (7) with e = h-I 

Remark. Using a duality argument together with (25), one obtains 

(28) (I - Qh) v 
z < Ch 1/2 z112, z E H2(Q) . 

OVA 0 - 

Indeed, for Aw = 0 in Q and w = OzIOvA on F, we have by (25) and elliptic 
estimates 

(I -Qh) OV l (I Qh)Wo? < Ch12 11HwII < Ch1/2 | Oz 0 VA 0 '~~~~~~O VA 1/2 

from which (28) follows by the trace theorem. 
For VhO it is well known that, for z E Hs(Q) n Ho' (Q) with 1 < s < 2 

(29) inf (110 - zllo + hIlO - zlll) < Chsllzlls. 
q5E Vho 

Remark. An immediate consequence of (29) and a standard duality argument 
is: 

(30) 11(I-Ph1)ziIj < Chs-lllZlls, z E Ho'(Q) n Hs(Q), 0 < I < 1 < s < 2. 

From (30), the boundedness of Ph? in L2, and the norm interpolation inequality 
(6) it follows that 

(31) II(I - Pho)zIIo < Chsllzlls, O<s<2, z E 2(A). 

By similar arguments it follows from (24) that 

(32) II(I - Yho)zllo < Chs<zsls2, O<s<2, zEHS(Q). 

Remark. We note that (25), (28), (30), (31), and (32) are valid for any space 
Vh satisfying (24), (26), (27), and (29). 

Finally we list two approximation properties of the space Vk for a generic 
Hilbert space H: 

(33) | -(I Pk)ZIILI(O, T;H) < CkIIZtILI(O, T;H) z E H1(0, T; H), 

(34) IlPkZIIL1(O,T;H) < CIIZIILI(O,T;H), z E L1(0, T; H). 

We now prove three lemmas that involve the following splittings of an arbi- 
trary u E Vh: 

U=Uh+Up and u=UH+Up, 

where up = Ph?u and up = Ph' u . Note that 

(35) (Uh, X) = ? x E Vho, 

and 

(36) a(uH, X) = O, X E Vh. 
The first two lemmas are slight generalizations of some results of [3]. 
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Lemma 1. Let u E Vh, and suppose z E H2(Q) satisfies a(z, 0) = 0 for all 
E Ho(Q) and z = u on F. Then 

(37) liz - uHIl < Ch-1/21u1o. 
Proof. By (3.34) of [3], UH - z E Ho (Q) satisfies 

(38) |uH - zIli < Ca1/2(z - UH, Z - UH) < CIUI1/2, 

and (37) follows by the inverse property (27). E 

The next result follows from Lemma 1 by the triangle inequality, elliptic 
estimates, and (27). 

Lemma 2. For any u e Vh, 

(39) IIuHIIl < Ch- 1/21u1o. 

Lemma 3. Suppose u E Vh; then 

(40) Iluhlls < Ch 1/2-slulo, O < s < 1. 

Proof. Since C"O (Q) is dense in HP(Q), p < I (see [12]), there exists {Vn} C 

C0 (Q) such that limn-,o JIVn - uH1 /2 = 0 . Noting that Uh = (I - Ph)uH, we 
then find 

lUh 110 = lim 11 (I_ p,)vn ||O Ch 1/2 lim I|vn|2 = Ch 1/2 1uHIlU 2 . Ilhl n--+coohC n--+coo 
12 C / 

As in the proof of Lemma 1, we have 

11UHII1/2 < I UH - Z111/2 + 1HZ1I1/2 

By the elliptic estimate IIzI11/2 < CIuIo together with (37) we obtain (40) for 
s = 0. For the case s = 1 the result follows by the inverse property (26) and 
the case s = 0. Now the general result follows by norm interpolation. 0 

4. L2 ESTIMATES 

In this section we prove Theorem 1. We assume that v E H-1/2 () and 
g E L2(X), and hence y E L2(0, T; HI/2(Q)) satisfies (13) and (20). 

An integral part of the proof is a particular stability estimate for the numerical 
scheme. The stability analysis of the method is of some interest, independent of 
its use in proving Theorem 1, and we begin by stating the main stability bound. 

Proposition 1 (L2 stability). There exists a constant C independent of h, k, 
and the data pair (v, g) such that if (2) holds then for 0 < n < N, 

n 

(41) Z(IIuj - uj-1112 + ka(uj, ui)) + 1junI12 < Ch-1(HvII112 jg+j2 ). 
j=1 

Before proving this stability result, we state and prove an auxiliary lemma. 

Lemma 4. There exists a constant C such that for 0 < n < N 
n 

(42) Z(IIdJ - u]71IIl + ka(uj, uj)) + IIujInI < Ch-1(IIvIlI12 + jgI2o). 
j=1 
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Proof. For any 0 E V? we have 

(uj - uj-1, q) + ka(uj, 0) = 0. 

Substituting u = Uh + up and using (35), we have 

(up - uj, q) + ka(up, q) = -ka(ui, k). 

Choosing q = uj and summing, we have 

(43) 2 n =I u || up 
- 

||o-+ ka(uj , up) . 

j=l 

Using the arithmetic-geometric mean inequality on the right side yields (43) 11n 

(44) 2|up|+ 2 ka(uj , uj). 
j=1 

Since up4= Ph0 3?v , we have 

Ht4}Io = SUp (3Dh2V,1 P,h ) < SUp lvli-/2HlP,hqHlt/2 ? Ch-1/2Hv1K 11 
tYEL2(Q) k//H H l tE2) 11'Ilo 

where the asthstep-fol f the inverse inequality (26). 
By Lemma 3 and the fact that Q is bounded it follows that 

Z ka ( uh, uh ) = zJt a( uh, u ) d t < C/h Z f Qg I2d t 

1=11j=1I 

Proof of Proposition 1. By the triangle inequality and Lemma 4 it suffices to 
consider 

Z(IuJ - uj- 110 + ka(uJ, uJ)) + HuHnj. 
j=1 

Using the inverse inequality (26) and assumption (2), we have 
n n 

0h12 + H i ka u u C2) 
Chj=lO j=OF) 

Since uo PhOY hv weo haCvhe Ul+ 20 

IIuOIIO = suph- (Yh PoV) s lup IoII-21PhV11-1/2 <C-12)V112 

p~~~~~~~~~~ ChL2Q (llglL2( V/ L2(Q() ) +1 llol-/2 
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We are now in a position to prove the main result of this section. 

Proof of Theorem 1. Letting w E H2 'I() n HI (Q) with w(, T) = 0, we 
obtain 

T ~~~N 
(U, Wt Aw [(u, Wt) - (u, Aw)]dt 

? ~~~~~n= In 

N Ow dt 
= zE [k1 (un, wn _ wn-1) - a(un, w) + Qg, VA dO 

We apply summation by parts to the first term: 
N 

1k-1(Un,n n_ n-I)dt 

n=l In=I 

But WN =w(, T) =0, sowehave 

(U, wt-Aw)dt 

N 

(46) = 1: (-k-1t (Un - un-I wn- 
I 

-a (Un W) + (Qg IW )) dt - (u?, w?). 

Subtracting this from ( 1 3) and letting Wt - Aw = e, where e = y - u, we have 

N 

Jjejj, 0 f (k-1( u- w'-') + a(un w)) dt 
n=I 

N Ow\ 
(47) + j ('- Q)g, OV? dt- [(v, w(., O)) - (3 v, w(., 0))] 

= Jl + J2 - J3. 

We estimate the individual terms in reverse order. Clearly, 

31 = I(v, (I- ho)w(., O))l < |VK1-/2H(I-32)W(., O)H1 /2 

< Ch 12H1V1ii_/211W(., O)11 < Ch 1/2HvH1-l/21ello,o 

where the last step follows from the parabolic estimate (23). 
We estimate J2 by the approximation properties of Pk and Qh, the inter- 

polation inequality (8), and the parabolic estimate (22): 

J2 = (j (-Pk)g a dt + (Pkg, (I-Qh) K dt 

T1a / dt \ VT aw J k)9 (I -Pk)w) dt + Pk,( h dit. 
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Applying the Cauchy-Schwarz inequality to this, we obtain the estimate 

ITIf~II( a 2 aw~i 2\1/2 
IJ21 ' C110 o( (I|-PkW + (I k Q) J2~?L~g~, a OVA 0,0 O9VA o,o} 

Inequality (8) yields 

19 V 2 0c 10 (I-Pk)w| ? -Hl(I-Pk)wH|2,o+c3H|(I-Pk)wHlO,o 
OVA ~~0,0 

? C wII112,0 +03k21Wt loo 

Choosing e = k-1/2 gives 

(I - Pk)w 2 Ck1/2 112 W . 

OVA 0,021 

Since 

(I - Qh) OV < Ch1/211W112,o, 

we obtain, from assumption (2) and estimate (22), 

IJ21 ? Ch2Hw11 12,1i1g1o,o < Ch112IeIIo,oIgIo,o. 
Finally, we turn to the estimation of J1 . We have 

N 

J,= (unu n-I wn-1) + ka(un, Pnw) 
n=1 

N 

- Z( u_ u-1 W - Ph ,Pnw) + ka(u, (I h k 

n=1 

Application of the Cauchy-Schwarz inequality gives 

(48) IJI? < TI * T2, 

where 
N 1/2 

T1 = E(ll n_un- 112 + ka(un , Un)) 
n=1 

and 

/N 1/2 
T2= j(|(Wn - PPkW 0 + ka((I - Ph h k 

n=l 

In view of Proposition 1 it suffices to estimate T2. First we note that by (30) 

9Wn-I _ PlPnwI|lo < Ilwn-1 - Pnw|lo + II (I - P)Pkw |lo 

< llUn-1 - Pknwllo + Ch2kP,w 2 1, 

and again by (30) 

(50) a((I Ph)Pkw, (I - Phl)Pknw) < Ch2 Pkw 2 - 



FINITE ELEMENT APPROXIMATION FOR A PARABOLIC EQUATION 91 

It is straightforward to show that 

(51) -lWn _ Pk wl lo < k112IbwtIIL2(Ij ;L2(Q)) 

and 

(52) blP,nwI2 < k- 2 
11WIIL2(In;H2(Q)) 

Hence, by (2) and the previous estimates (49)-(52), 

/N 1/2 
T2 <C j ( (h + kh )IIPk + kllWt 1l2(I;L2(Q)) 1 

/N 1/2 
? Ch HIIW 1L2(I ;H2(Q)) + jWtHL2(I ;L2())) 

? Chjjlwjj12,<1 
By the parabolic estimate (22) we have 11wI12,I < ClIeJ1o,o and hence T2 < 

ChIIeIIo,o . Combining this with (48) and Proposition 1 completes the proof. E 

5. L?? ESTIMATES 

In this section we prove Theorem 2 as well as an LO stability estimate 
in time. We assume v E H1/2(Q) and g E L??(0, T; L2(r)), and hence 
y E L0(0, T; H1/2--(Q)) satisfies (13) and (21). We will use the spectral 
properties of the discrete elliptic operator Ah: VhJ --J VJ defined by 

a(X, q) = (Ah%, q) V E Vho. 

Let { ih , Ai}Nh1 be an orthonormal eigensystem for Ah, that is, 

a(V4, ) - ,h(Vih,q$) 

for all 0 E Vho with 0 < Ah < Ah < ...< ANh' where Nh = dim(Vh?) and 

(qh, qh) = 3 * In our analysis we will use the norm 

Nh 

%x1112=Z(x, h)2(i3)s, 0<s< 1, 

i=l 

where X E VhJ is given by - E=NZhi(X, q4V)q 4. It is easy to see that 
Nh 

11%112 = Z(%x, Vih)2 = 1111112 
i= 

and 
a(Z, x) = (AhX, x) = IxH2 . 

By interpolation, Bank and Dupont [2] prove there exist constants Co and Cl 
so that 

C0jlllls < IIIxbIIs < ClHx%s 0 < S < 1, X EVh? 
Since Ah is symmetric positive definite, we may also define 

Nh 

Aqh= (x,4)()q, 0 < q <?1. 
i=l 
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It follows that 
Nh 

JAs/2XIIO = (Ash, x) = Z(x, Wgh)2(Lh)S - HxYs 
i=h 

The following lemma is critical to our proof of Theorem 2. 

Lemma 5. There exists a constant C such that for 0 < q < 1 

(53) JJAqh(I + kA )n 1|| < Ct- q. 

Remark. The inequality (53) is a discrete version of a key semigroup inequality 
used in [6, 17]. 

Proof of Lemma 5. We first assume 0 < q < 1. We have 

IIA q (I + kAh )-n= sup f(A), h 
AEa(Ah) 

where f(t) = tq(l + kt)-n, and a(Ah) denotes the spectrum of Ah . A short 
calculation shows that on [0, oo) the absolute maximum of f occurs at A* = 
q/(k(n - q)) . It follows that 

(54) f(A) < f (*) = (k(n q)) (1 + q) = qq(nk)-q (n n qfn 

Thus, 

(55) IIA q(I + kA )-n11 < q q ( ) t--q < C t-q 

The analysis above is valid for q = 1, except when n = 1 and f has no 
maximum. However, the estimate for this case is obvious. El 

The following lemma establishes the boundedness of the projection h?. 

Lemma 6. There exists a constant C such that for all z E Hs (Q) 

(56) Ilkh2ZIs < CZIls, 0 < s < 1. 
Proof. Let hl: HI (Q) -- Vh satisfy 

(YhIZ,) I = (Z, )1 E Vh, 

where (, ) denotes the inner product on HI (Q). 
It follows by a standard duality argument that 

(57) 1(I -Yh%)zJJo < Chllzll , z E H1(Q) 

By definition, ph? is a bounded linear operator from L2 (Q) into itself. Also 
we have 

Ilh ZII ? Il(9'h -9h )Z11I + llh'hZl1l 

< Ch-1(||(I-h?)O)zJo + (1 (I-h)z11o) + llzlll 
< Cllzlli, 

where we used the approximation properties of ho and (57) in the last estimate. 
Thus, h? is a bounded map from HI (Q) into itself. By interpolation (see 
Theorem 5.1 in Chapter 1 of [20]), Yh?: Hs(Q) - Hs(Q) is bounded for 0 < 
s< 1. 0 

We now give the L?? in time stability estimate. 
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Proposition 2 (L?? stability). Suppose v E H1/2 (Q) and g E L?? (0, T; L2(r)). 
Then for 0 < n < N, 

(58) IIUIIL-(O,tn;H1(Q)) < Ch- + IIVIII/2+ln (hI) IIIILoo(o,tn;L2(F))) 

Proof. For q E Vh? we have 

(Un un-1, ?) + ka(u, qU ) =-ka(un, 0), 

and since -a(un, 0) = a(un - un, q), we obtain 

(I + kAh )Un =Un-1 + kAh (Un-Un). 

It now follows that 
n 

UP = (I+ kAhY u? + k Z(I + kAh)YjAh(u' +lp - + ), 
j=1 

and hence 

IlUnllli < ||(I + kAh)-nAH IHu1/41 2 

j=1 

By Lemma 5 it follows that 
n 

|||Un||ll, < C(h IIIIUn--j)9hI +1 | l /)<Civl / 

(6) IU _ Ct;T114iHu|l iic +CkZtffHuUn Ch-I/2- u Ch ' |III 
j=1 

Now we estimate the terms upe112 and I - uH We have by norm 
equivalence 

IIIUOIIII/2 ? CIIu(III/2 = CIIP,ho2vII2 ? C(II(I - PIh)5h?vHIII2 + Il32hVI1/2). 

By Lemma 6, the inverse property (26), and Lemma 3 we find 

IIIuIIII/2 ? (h(,/2 t), V1L/2) ? CHv H L/2. 

Alsoince - h = - he triangle inequality and Lemmas 2 and 3 
imply that 

(60) Ilum - umllHi ? Ch- I/2IUmIo ? Ch-1/2~g~I;2p) 

Combining these estimates gives 

(61) IIupIL-(o,tn;H1(A) < Ch- / (IVH111/2 + In ( II)IgLOO(O,tn;L2(F))) 

since En k ty1. < C In( I). It is not difficult, using Lemma 3, to show that 

(62) IIUhIILoo(,tn;L2(Q)) < Ch 1/2IIgIL-(o,tn;L2(p)) 

and 

(63) max a(uh(., t), Uh(*, t)) ? Ch-1/2IIgIL-(o,tn;L2(r)).- 

Finally, by the triangle inequality, we combine (61), (62), and (63) to give 
(58). o1 
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We complete this section by giving the proof of Theorem 2. 

Proof of Theorem 2. By the triangle inequality, 

1 (u-y)(., T)1o < 11 (u-hy)(., T)1o + JI(I - 3h?)y(., T)10o. 

Letting I = (u - h?y)(., T) and using the approximation properties of 'Dh? 

along with the a priori estimate (21), we have 

(64) 1(u - y)(., T)1Ho < llqllo + Ch /2 (jVjj1/2 + |g|IL- (O, T;L2(F))) 

Thus, we must estimate q . Let w E H2 1 (S) n Ho (Q) satisfy wt - Aw = 0 and 
w (., T) = q . Starting with (13), the discrete equations for un, and summation 
by parts, we obtain 

N 

((u-y)(., T), 1)= s j (k-'(Un - n-I n1) + a(un, w)) dt 
n= In 

+ : ((-Q)g' aO ) dt-((I-YhO)v, w( ,O)). 

Adding and subtracting h?y(., T) on the left side, we have, since 

((I-hO)y(, T), j) = 0, 

N 
= 
0 (k- 1 (Un un, wn1+ (, w)) dt 

n= In 
(65) TV IaQ Ow 

(65) + 0 ((I-Q)g, ,, )dt-(- )V I W(" 0)) (I Og 
aVA 1 dt((I -32),wh ,) 

=SI +S2+S3. 

We now estimate the terms Sj. For the last we have 

(66) 1S31 < |I(I - hO)vjjoIjw( , 0)jo < Ch 1/2 1vIi i2II1Io 
where the estimate for w(., 0) follows from (23). We now estimate S2: 

T a ~~w \ TOw )ct 
S2= 9(\g, (I- Pk) O VA dt + Pkg J - 

Qh) OVA d/ 

By the Cauchy-Schwarz and Holder inequalities we have 

|S21 < 1lgIILoO(O,T;L2(r)) ( - 
| k(1 

a w 

(67) O9VA L1(O,T;L2(F,)) 

+1 ('Qh)~VA LI(O, T;L2(r))) 

We estimate the terms on the right side of (67) separately. Using (8), we have 

(I- Pk)Ow - (I -Pk)W 
OVA LI (O, T; L2 (r) OVA LI (O, T; L2 (r)) 

< Cc2 || (I - Pk)W IILI (O, T; H2(Q)) + 3|(I-Pk)W IILI (O, T; L2(Q)). 
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Choosing e = k-1/2, we obtain 

a VA ILI (0, T; L2 (r)) 

< Ck /411(I -_Pk)WLI(O, T;H2(Q)) + k 3/ (I_Pk)WHLI(O, T;L2(Q)) 

Since wt = -Aw, we have 

II(I Pk)WHLI(O, T;L2(Q)) < CkllWtHIL1(O,T;L2(Q)) < CkllwILI(O, T;H2(Q)) 

and 

||(I-Pk)W|LI(O,T;H2(Q)) < CWHLI(O, T;H2(Q)), 

so that 

(68) I (I-Pk) aw < Ck 1/4 |WI LI (O T; H2(Q)) aVA LI(O, T; L2(r)) 

To complete the estimation of S2, we turn to the last term in (67). By (28) we 
obtain 

(69) |(I- Qh) aw < Ch 1/2 1W1LI( T;H2(Q)) a VA LI (0 T; L2 (r)) 

Combining estimates (68) and (69) in (67), we have 

1S21 < C(k1/4 + h1/2)IIgIIL- (0oT;L2(n)) lIwILL(o0T;H2(Q)). 

We now apply the estimate ( 11) with s = 2 and / = e: 

(70) I|W||L1(O,T;H2(Q)) < C (T-t)-(2 e)/2 dt < CTIIjIIe < CTh r111110, 

where we used the inverse inequality (26) in the last step on I E Vh . Thus, 

(71) IS21 < Ch 1/2 lL- (0,T; L2(n))1 1 0 

Finally, we turn to estimating SI . From (3) we have for any 0 E Vh0 0 Vk 

N 
s E((un n-I n- _?) + ka(un, P2nW- 

n=l1 

N 
S ((u_ - l POw 1 - q_) + ka ( ku P,1P2w - 

n=1 
N 

+ Z((U - u1 (I- Ph?)Wn1) + ka(U7, (I -P h ) P w)) 
n=1 

The choice q$ = Ph?wn-1 on In~ gives 
N 

Si = Zka(un, P,Pnw -PkwaHh 
n=1 

N 

+ ZE[(u-U 1Un j (Ip-pPn?)wn ) + ka(u1, (I - P)P2)w)] 
n=1 

= T1 + T2. 
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We estimate the terms T, and T2. By the Cauchy-Schwarz and Holder in- 
equalities we have 

N 

(72) lTII ? IIUIILoo(o,T;H1(K))ZkIIPh,Pkw -Phw 1III. 
n=I 

By the triangle inequality and inverse property (26), 

IIPhPk W-P,wII < || (I - PhPw)Pk| 
+ Ch-1(II(I - PhO)PknwlO + -lPh (Pknw- wnl)IIo), 

and hence by (30), (31), and the boundedness of Ph,, 

(73) IIPh PknS-hlUpw Ownw1I ? C(I hIPknw wI2 + h'IIlPknw -wn I |o). 
It is not difficult to show 

(74) lPkn2W12 < k1IIWIIL1(In;H2(Q)) 

and 

(75) IIPkpnSw - 
10 < 

IIWtIIL1(I, 
;L2(Q)) . 

Combining these estimates, we obtain 
N 

ZkIIP~P~- p,n- I 
IIIi E k lPhl Ph kn w-pO h 

n=1 

(76) N 

(76) ~~~< C EhIIwIIL1(In;H2(Q)) + kh- ||Wt ILI(In; ;L2(Q)) 
n=1 

< ChllIwllLl(0, T; H2(Q)) 

where we used (2) and wt = -Aw in the last step. By (70), (72), (76), and 
Proposition 2 we complete the estimate of T,: 

lTI| < Ch / V (11v1/2+ +n (h) IIgIILOO(O,T;L2(r[)) 1l1llo. 

For T2 we have IT21 < Fv F2, where 

F1 =llUhllLoo(,T;L2(Q)) + hll2UHIILo(O,T;L2(Q)) < Ch1/21IgIIL- (0 T;L2(Q)) 

by Lemmas 2 and 3. Moreover (since P1nwn- = Wn-I 

N 
F2 = Z 11(I - Po)Pnwn l lo + kh 11I(I - Phl)Pkn2w 

n=I 
N 

? Z ||(I - P*)Pn(wn-1 - w)|lo + ||(I - PhO)PknwIIo + kh1l||(I - Ph)PknwIII 
n=I 

N 

< C ||WnI - -Pn Wlgo + (h 2 + k) ||Pknw ||2, 

n=I 

where we used (30) and (31) in the last step. The last estimate together with 
(74), (75), and assumption (2) completes the estimation of F2: 

F2 < CIIWIILI(O,T;H2(Q)) . 
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Combining the estimates for F1 and F2, and using (70) gives 

IT21 < Ch /,-, 1191IL?(O, T;L2(r))||II| IJ. 

This completes the estimation of SI . Combining the estimates for S1, S2, S3 
in (65) gives the required bound for II qllo. Substituting this in (64), we obtain 
the required estimate at tN = T. Since the same argument applies for any tn, 
the proof of Theorem 2 is complete. E 

6. SMOOTH SOLUTION ESTIMATES 

In this section we show that an optimal-order convergence rate is obtained for 
our method when y E H2, 1 (S) . Our analysis is quite similar to that contained 
in [14, ?8.4; 15]. Note that there are no restrictions on k or h in this section. 
As usual, the error is split into two components: 

e = y - u = y - ii + i - u = 0 - ? , 

where ui E Vh 0 Vk is defined on I, as follows: 

U, = U n = k | i(., s)ds, n > O, 

and u?0 = u?. The function ui(., t) E Vh is an elliptic projection: 

a((ui - y)(, t), 0) = O, ?> E Vho , 

for 0 < t < T and fu = Qhg on F. The following lemma gives the approxi- 
mation properties of ut. 

Lemma 7. There exists a constant C independent of h, ui, and y such that 

(77) 11(y - fu)(., t)IIo < Ch2IIY(*, t)112- 

Proof. Define 9h: H1 (Q) -* Vh by the equation 

a(Y9Ahw, X) + h-1(3hw, X) = a(w, X) + h-1(w, x) 
for all x E Vh . For 4 E HI (Q) define the norm 

X(4) = (a(4, 4) + h- 1kI)21/2. 

It follows that for w E H2(Q) 

V((I --Jh)W) = inf A(q - w) < ChIIw 12, 

where the last estimate follows from (7) and (30) by choosing e = h- 12 and 

We note that a(Yhy, )=a(y, ) for q$E Vh7 . Thus, a(ut - Yhy, k) = O 

for all q E Vh? . So, ut - YhY is discrete A-harmonic and therefore by Lemma 2 

a(u_ 92hy, U - 5hy) < Ch l|u- hyI20 

< Ch(I| (I - Qh)YI2 + |(I _h)Ylo) 
T Chs i (I h b rn)yge n 

This implies by the triangle inequality 
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From this we obtain the optimal estimates 

a(ui - y, ut - y) < Ch2IIyI112 

and 

lu - _vy? <Ch3IIyII2. 

Let w E 9(A) satisfy Aw = f - y on Q. Then for any q$E Vh? 

||u-Y||o =a(-y,w- (I-Qh)Y , (I-Qh) V 
O9VA! 

(I-h) 2\ 

1/2 < X(CIy) Ia(wX-w), O Qh) a VA |) 

< Chllw112-I(fi- Y) 

where we chose Ph w on the last step. Thus, by elliptic regularity, 

IIf4 - yllo < ChI(u4 - y). 

Combining this with the previous estimates proves (77). O 

Remark. The function fu and the argument used in the proof of Lemma 7 
were introduced in French and King [11]. Also, see the related work in Fix, 
Gunzburger, and Peterson [10]. 

By standard arguments we can now show, using the result of Lemma 7, 

(78) IIHIIo,o < C(k + h2 )11 II2 1, 
N 

(79) Z kII 
on 2 < C(k + h2) 11Y112 1, 

and 

(80) IIOIIL??(O,t, ;L2(Q)) < C(k + h2 II|YIIL?(O, T; H2(Q)) 

where on = y(., tn) - fn. In contrast to our analysis in ??4 and 5, the solution 
y satisfies the following weak form for qE Vh: 

(81) j(k (yn _yn 1, q$)+ a(y, q$))dt =0. 

We are now in a position to state and prove the L2 convergence theorem. 

Theorem 3. If y E H2'1 (c'), then there exists a constant C independent of 
h, u, and y such that 

(82) IlY - ullo,o < C(h2 + k)IIYII2Y 1. 
Proof. Define z E V0? 0 Vk, so that zN - 0 and 

(83) k-1/_ n _ n-I 
-a( Z/n-1 (,^n E\ Vh To 
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Letting q I = n and integrating in time, we have 
N 

jqj2'0 Zj(k- (zn _ zn-I ?In) _a(zn-l ,a))dt 
n=1 I 

N 

=E XZ(k-(znn _ , UZ Un) n a(zn-I ,u n)) dt 

n=1 
N 

- : j (k-I(zn _ Zn-, In) - a(zn-l , an )) dt 
n=1 I 

N 

-_E -( (k-,(Z n-IZ un un-nl + an(Zn-) ( un)) dt 

n=1 I 
N 

+ j k- [(Zn un) - (Zn)d t .n )]dt 
n=I tt 

N 

(4E j(k-I(Zn Zn- , yn) - a(Zn-, qn)) dt 
n=1 I 

N 

-8(Z 5 u5) _ k j (k-a (Zn _ Zn-d, in) - at(z=-O in dt 
n=1 I 

where the last line follows from (3) and ZN = 0. Now from summation by 
parts we have 

N 

(86) -,o= ( - |eZn-in On-i) , 1 fin 
n= 1 

In the last step we subtracted the equation 
N 

(84) ?Z Ek (k-k -(y n _iyn- + a(y = I,dt 
n=1 n= 

and used the fact that 

(85) |a(y - ,n , ) d t = O 

for =Zn-I . Also, the first term is zero since u?O = u?. Summation by parts 
gives 

N 

(86) 1?11120 E Z zn _ z n-I 5 n-I 

n=1 

where we used the fact that (00?, z?) = ((I - 6^?)v , z?) = O . 
By setting =Zn-I _ zn in (83) and using summation by parts, it follows 

that 
N N 

E k-l ll n _ zn-11llo < 1: kll 
n 

llo = 11)1112 
n=1 n=1 
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By the Cauchy-Schwarz inequality applied to (86) we have 

N \ 1/2 N 1/2 

(87)2,o< (< kilOnlIn ) (1k2Ilzn- zn- 112) 

(87) Nn=1 n=1 

N 

< I:klO n-1 
112 

n=1 

By (79) we have the required estimate for l, and the estimate (82) now follows 
from (78). C1 

We now move on to the L?? estimate. 

Theorem 4. There exists a constant C independent of h, u, and y such that 
for any 0 < n < N 

(88) IUn -yn 10 < C (1 +ln (t)) (k+h2)IIYIILo(0, T;H2(Q)). 

Proof. Let z E Vho 0 Vk satisfy zN = ?7N and 

(89) k-l(zn zn ?) -a(zn E) V=O, heV, . 
Letting + = un - fin and integrating in time, we obtain 

N 

E [k-l (Zn _ zn-I 1 un _ Fn) - a(Zn-1, un _ fin)] dt = O0. 
n=l I 

Since u? = u?, summing by parts gives 
N 

114 llo2=- zJ [k-1(un jn_ f-(n- l-fn-l), zn-l) + a(zn- I un _ in)] dt. 
n=1In 

From (83) and (84) this becomes 
N 

11 2= / [k-l(on - on-i zn- 1) + a(, zn- )]dt. 
n=l I 

Summing by parts and recalling that (00, z?) = ((I -32)v, zO) = O, we find 
N 

11UN 12 = (ON 
, 

ZN)- [k-1 (On-1, zn _ zn-I) + a(O , zn- )]dt. 
n=l1I 

From (85) we obtain, since zN - 7N, 

N 

INI12 = (ON, ZN) - (zn _ zn-I O n-I 

n=1 
N 

< 110 loll,N |lo + max j O lZl zn - zn-l o. 
n=1 

From [14, p. 166] we have 
N T (\ 

Zzn n Zn 1110 <C (1 +ln (i)) 11zNllo = C ?l +In T N 
n=1 
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so 

17?N110 < C (1 + In ( k)) max Ion llo. k 1<n<N 

From (80) and the fact that N can be replaced by any n the proof is com- 
plete. 0 

7. NUMERICAL RESULTS 

In this section we discuss a practical implementation of our method on some 
problems with both smooth and nonsmooth boundary data. We let A = -A. 
Our scheme, which consists of piecewise linear finite elements in space and the 
implicit backward Euler method in time, is standard except for the handling of 
the boundary conditions. We use a preconditioned conjugate gradient method 
to solve the linear systems that arise on each time step. An incomplete Cholesky 
decomposition provides the preconditioner. 

The numerical results demonstrate clearly the advantages of a robust method. 
In a smooth example the optimal 0(h2) convergence rate is achieved. In ex- 
periments with boundary data that has jumps and discontinuities in time and 
space, we found the rate of convergence over the range tested is more like 0(hY), 
where y > 1/2. Previous methods that required the approximation to be zero 
on the boundary could achieve at most an 0(h 12) convergence rate. 

Our practical evaluation of the boundary conditions requires some discus- 
sion. To find Un+I from Un, we need the boundary function Qg restricted to 
the interval in time In, which is given by 

((I - Q)g, x) dt = x, X E Vh(F). 

Let {q$, ..., qj} be a basis for Vh(IF). We have, on In, Qg = EJ91 
and taking X = qi gives 

J 

E cjk(qj, q$i) = ](g, qoi) dt. 
j=1 

To simplify the left side, we approximate the inner product by the trapezoid 
rule; the matrix then becomes diagonal. On the right side of the equation we 
used the trapezoid rule in the smooth case and the rectangle rule with a large 
number of subdivisions in the rough data case. In all experiments we took 
Q= (0, 1) x (0, 1), T = 0.1 , used a uniform mesh to discretize Q, and chose 
k - Ch2. 

The results for our experiment with smooth boundary data are displayed in 
Table 1 (see next page). We took as the known solution 

y(x1, x2) = e-2t/2 sin (l 2r) sin (7 2r) 

The order of convergence was computed by the formula 

Rate = ln(E2/EI)/ln(h2/hI ), 

where E1 and E2 are errors on successive meshes, and h, and h2 are succes- 
sive triangle diameters on these meshes. As predicted, we obtain an 0(h2) rate 
of convergence. 
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TABLE 1. Smooth g 

Mesh N Error Rate 

4 x 4 2 0.456(-1) - 

8 x 8 8 0.112(-1) 2.03 

16 x 16 32 0.280(-2) 2.00 

32 x 32 128 0.701(-3) 2.00 

Our solution in the second experiment has a jump in time in its boundary 
data, g = 0 for t < t and g = 1 for t > t, where t = 0.07071 and v 0. 
The true solution to this problem is obtained by separation of variables. We 
find y(., t) = 1 + z(., t - t), where 

00 
1 -('b 

z(xl, x2, t) = -16 j anb en(a?b )tsin(anx1)sin(bmx2), 

an =(2n-1)7r, bm =(2m-1)ir, z=0 on I,and z= -1 at t=0 on 
Q. We evaluated all boundary integrals using the trapezoid rule, splitting the 
integral on the interval Ij that contains i into two pieces, one on each side of 
the jump in the boundary data. Table 2 has the results for this case. It is not 
surprising that the convergence is better than h1/2, since the solution is smooth 
except near t. 

In the final test the boundary data is given by 

(x , X2 , t) = sgn (sin (4T + 3 sin(47rx, + v'2)sin(67rx2 + e)) , 

where sgn is the signum function. Here, g has discontinuities in both space 
and time. Since we do not know the true solution in this case, we compared our 
approximations to a finite element approximation obtained on a 64 x 64 mesh 
with 512 timesteps. Table 3 has the results, which again show the convergence 
rate is better than h112 . 

TABLE 2. g discontinuous in time 

Mesh N Error Rate 

4x4 2 0.728 - 

8 x 8 8 0.528(-1) 3.79 

16 x 16 32 0.150(-1) 1.82 

32 x 32 128 0.508(-2) 1.56 
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TABLE 3. g rough 

Mesh N Error Rate 

4 x 4 2 0.118(+1) - 

8 x 8 8 0.671 .814 

16 x 16 32 0.274 1.29 

32 x 32 128 0.132 1.05 
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